AD-190 399
UNCLASSIFIED

IBARIRAT R MR

—y—

IRy

| 5

=l
dddd 3 o

"EEET

I=
FER

>

s s s

MICROCOPY RESOLUTION TEST CHAR®
NATONAL BUREAU oF STANDENDS w1983 ~

... OMC FILE copy

AD-A190 359 PPN Fr iy “TEG i S

-4, TITLE (and Subtitle) 2L OF RESLET B PERIND (OVERED

Aca Compiler Validaticn Summary Repirt: 26 Ayr 1387 to 28 Apr 1988
IBM Corp. IBM S/370-VM/SP to RT PC-VRM Ada Cross |
i Compiler, Ver.2.2.IBM 3081 Hos: .nd IBM RT PC Target 2 PERFURMIN, (. REPORT NUMBZA
17, AUTh 5. CONTHAC™ uR GRANT NUMBER(s)

i Wrig {i)Patterson AFB
|

3. PERFORMING ORGANIZATION AND ADDRESS 10, SROGRAY ELIMENT. PRCJECT. TASK
| Ada Validation Facility SPLA & WORK UNIT NU™EERS
ASD/SIOL
Wright-Patterson AFB OH 45433-6503
11. CONTROLLING OFFICE NAME AND ADDRESS 2. REPOKI DATE
Ada Joint Program Office 28 Apr 1387
United States Department of Defense MR O TGS —_——
Washington, DC 20301-3081 33
14. MONITORING AGENCY NAME & ADDRESS(/faifferent from Controiling Office) 5. SICURI ((LASS (of thisreport)
Wright-Patterson UNCLASSIFIED
3. QECLASSIF ICATION DOWNGRADING
N/A

i Apprcved for public relezse; distribution unlimitec.

17. DISTRIBUTION STATEIMENT (of the abstract enteredin Block 20. If differ. 1t from Report)

UNCLASSIFIED

18. SUPP_EMENTARY NOTES

©13. XEIYWOR2S (Continue onreverse side if necessary and identify by D.cck numite -)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Valication Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

DD TU"™ 1473 coITION OF 1 NOV 65 IS OBSOLETE
1 JAN 73 S/N 0162-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data tntered)

EXECUTIVE SUMMARY

B

’

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the IB! S/370 - VM/SP to RT PC - VRM Ada
Cross Canpiler, Version 2.2, using Version 1.8 of the Ada® Compiler
Validation Capability (ACVC). The IBM VRM Ada Cross Coupiler Is hosted on
an IBM 3081 operating under VM/SP (using CMS), Version 3.). Programs
processed by this compiler may be executed on an IBM RT PC operating under
VRM, Version 1.1.

On-site testing was performed 24 April 1987 through 28 April 1987 - at IBM,
Corporation 4n* Galthersburg MD, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 1938 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler.: The 19 tests
withdrawn at the time of vallidation testing, the 278 executable tests that
nake use of floating-point precision exceeding that supported by the
implementation, and the 164 executaole tests that require the creation of
external files were not processed.> Aifter the 1938 tests were processed,
results for Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were aralyzed for correct diagnosis
of syntax and semantic errors. Canpilaticr and link results of Class L
tests were analyzed for correct detection of errors. There were 38 of the
processed tests determined to be irapplicable., The remaining 1900 tests
were passed. -~

The results of validation are summarized in the followirng table:

RESULT CHAPTER TOTAL
2 _3_4 5 6 _ 7 8 _9 10 1 12 1w

Passed 93 205 280 2u3 161 §7 136 262 107 32 217 67 - 1900

Falled c 6 0 0 0 0 0 0 ©O0 0 O O 0

Inapplicable 23 120 140 4 0 0 3 0 23 0 1 166 480

Withdrawn 0o 5 5 0 0 1 1 2 4 0 1 0] 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399
-

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL.STD-1815A Ada.

®Ada 13 a registered trademark of the United States Government
(Ada Joint Program Office).

gy

T

AVF Control Number:

Ada® COMPILER
VALIDATION SUMMARY REPORT:
IBM Corporation

IBM S/370 - WM/SP to RT PC -
VRM Ada Cross Compiler, Version 2.2

I2M 3081 Host and IBM RT PZ Target

Completion of On-Site Testing:
28 April 1987

Prepared By:
Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

AVF-VSR-68.0787
87-01-21-1I3M

®pda is a registered trademark of the United States Government
(Ada Joint Program Office).

e e e ag .
H ‘

|

L s XTSI IS LTI IS L 2l 2

+ +
+ Place NTIS form here +
+ +

LA Al 2222 d 22T S22 22 2 L]

I e e e

Ada® Canpiler Validation Summary Report:

Conpiler Name: TIBM S/370 - VM/5P to RT PC - VRM Ada Cross Camplier,
Version 2.2

Host: IBM 3081 under VM/SP Target: TBM RT PC uncer VRM,
(using CMS), Version 3.1 Version 1.1

Testing Compieted 28 April 1987 Using ACVC 1.8

This report has been reviewed and is approved.

/ vl
HZW {~ ,tQJ/z;.mO
’ Ada Validation Facility

Georgeanne Chitwood

ASD/SCOL
Wright-Patterson AFB OH U45433-6503

bl L Wewpn

Ada Validation Organization
Or. John F. Kramer

Institute for Defense Analyses
Alexandria VA

ma

nda Jint Program Office
Virginla L, Castor
Director

Department of Defense

T washington DC

ZAda 1s a registered trademark of the United States Government
(Ada Joint Program Office).

- - - .

T

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the resuits and conclusions
of validation testing performed on the IBM S/370 - VM/SP to RT PC - VRM Ada
Cross Campiler, Version 2.2, wusing Version 1.8 of the Ada® Compiler
Vaiidation <Capability (ACVC). The IBM VRM Ada Cross Compiler is hosted on
an IBM 3081 operating under VM/SP (using CMS), Version 3.1. Programs
proce=zsed by this compiler may be executed on an IBM RT PC operating under
VRM, sei'Sion 1.1,

On-site testing was performed 24 April 1987 through 28 April 1987 at IBM
Corporation i1in Gaithersburg MD, under the direction of the Ada Validation
Faciliity (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF i1dentified 1938 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of vallidation testing, the 278 executable tests that
make use of floating-point precision exceeding that supported by the
implementation, and the 164 executable tests that reguire the creation of
external files were not processed. After the 1938 tests were processed,
resuilts for Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were analyzed for correct iagnosis
of syntax and semantic errors. Campilation and link results of Class L
tests were analyzed for correct detection of errors. There were 38 of the
processed tests determined to be inapplicable. The remaining 1900 tests
were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 _3_4_ 5 _o©6_7_8_9 10 11 12 4

Passed 93 205 280 243 161 97 125 262 107 32 217 67 1300

Falled 6 0 0 0 0 0 0 O O 0 0 o 0

Inapplicable 23 120 40 4 0 ¢ 3 0 23 o0 1166 U460
Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19
TOTal 116 330 425 247 161 98 140 264 134 .32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MZIL-STD-1815A Ada.

®Ada 1s a registered trademark of the United States Government
(Ada Joint Program Office).

¥

4

CHAPTER 1

d
NEWN S

- s
. s

CHAPTER

N

NN
“« .
N -

CHAPTER

w

.

* & o

W wWwww Wwwww W
. .
N NN E W -

AFPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

- .
w v -

TABLE OF CONTENTS

INTRODUCTION

PURPQSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATTON SUMMARY REFORT

REFERENCES . + « ¢ & v v o v v o &
DEFINITION OF TERMS ., . . « . . .
ACVC TEST CLASSES
CONFIGURATION INFOPMATION

CONFIGURATION TESTED . « « o & + &
IMPLEMENTATION CHARACTERISTICS . .

TEST INFORMATION

TEST RESULTS & & v v v v ¢« ¢ & & &
SUMMARY OF TEST RESULTS BY CLASS .

SUMMARY OF TEST RESULTS BY CHAPTER .

WITHDRAWN TESTS . . & ¢ & o « o« &
INAPPLICABLE TESTS & v « o o o o »
SPLIT TESTS & & « ¢ o o ¢ s o o &
ADDITIONAL TESTING INFORMATION . .
Prevalidation ¢« « ¢ « &
Test Method ¢« ¢ . .
Test Site . ¢« & v ¢ o o ¢ o« o &

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDPAWN TESTS

.

WL Wwwwwwwww
[}

L SR ARRW A IRV LR R I b B RS s

Rl JS PR)
]
£ Wi v

n'|\):\)
N

al | V-

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada campiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical temms wused within %t and thoroughly
reports the results of testing this campiler wusing the Ada Campiler
Vaiidation Capabiliity (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
aust be implemented in its entirety, and rnothing can be impleumented that is
not in the Standard.

Even though all validated Ada coapllers conform to the Ada Standard, it
aust be understood that some differences do exist between Implementations.
The Ada Standard permits some implementation dependencies--for example, the
zmaximun length of didentifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies., All
of the dependencies observed during the process of testing this compiier
are given in this report.

The Information in this report is derived from the test results produced
during validation testing. The validatlion process Includes submitting a
sulte of standardized tests, the ACVC, as Znputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure corformity
of the compiler to the Ada Standard by testing that the compiler rroperly
implements 1legal language constructs and that it fdentifies and rejects
Zilegal language constructs. The testing also identifies behavior that 1is
izplementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform cheaks at compile
tine, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALTDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To atteapt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compller was conducted by SofTech, Inc., under the

Irection of the AVF according to policles and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
24 April 1987 through 28 April 1987 at IBM Corporation in Gaithersburg MD.

1.2 USE OF THIS VALIDATION SUMMARY HEPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation appliy only to the computers,

operating systems, and campller versions Identifi in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB CH U5433-6503

1-2

Questions regarding this report or the

ey e e -
INTROLUST T O

vzlidat'on test results snould be

d*rected o the AVF llsted above or to:

Ada Validation Orgarization
Institute for Defense Analyses
1301 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, February 1983.

2. Ada Validation Organization: Procedures and Guideiines, Ada Joint
Program Office, 1 January 1987.

3. 4Ada Campiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1934.

1.4

Ada Standard

Applicant

Falled test

Host

DEFINITION OF TERMS

The Ada Compiler Validation Capabllity. A set of programs
that evaluates the conformity of a cocpiler to the Ada
language specification, ANSI/MIL-STD-18154,
ANSI/MIL-STD~13154, February 1983.

The agency requesting vaiidation.

The Ada Validation Facility. In the context of this report,

the AVF is responsible for conducting compiler validations
according to established policies and procedures.

in the context of this
procedures for

The Ada Validation Orgarization.
report, the AVO is responsible for setiing
compiler validations. .

A processor for the Ada language. In the context of thls
report, a campiler s any language processor, including
cross-compilers, translators, and interpreters,

A test for which the compiler generates a result that

demonstrates noncorformity to the Ada Standard.

The camputer on whnich the campller resides.

1-3

INTRIDUCTION

Trnapplicabie A test that uses features of the language that a compllier is
test not required to support or may iegitimately supp.rt in a way
otner than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compller generates code.

Test A program that checks a coampiler's conformity regarding =
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
siangie test, which may ccaprise one or more files.

withdrawn A test found to be incorrect and not used to check conformity

test to the Ada language specification. A test may be iIncorrect
because it has an invalid test objective, falls to meet its
test objective, or contains Zllegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard Is measured wusing the ACVC. The ACVC
contains both legal and 1llegal Ada programs structured into six test
classes: 4, B, C, D, E, and L. The first letter of a test rname iIdentifies
the class to which it belongs. Ciass A, C, D, and E tests are executable,
ard special program units are used to report their results during
execution. Class 3 tests are expected to produce campilation errors.
Zlass L tests are expected to produce liink errors.

Ciass A tests check that legal Ada programs can be successfully compiled
ard executed. tHowever, no checks are performed during execution to see iIf
the test objective has been met, For example, a Class 2 test laecks that
regserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada campiler. A
Class A test 1is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal larguage usage. Class
3 tests are not executable. Each test in this class is cauplled and the
resulting compilation listing is examirneld to verify that every syntax or
sajantic error in the test i cdetected. A Class 2 test i3 tassed if every
illegal construct that it contains is detected by the compller.

Ciass C tests check that legal Ada programs can be correctly complled =
executed. Fach Class C test 1is self-checking and produces a PASSED
FAILED, or NOT APPLICABLE message indicating the result when it 1
executed,

Class D tests check the compilation and execution capacities of a compiler.

Since there are no capacity requirements placed on a campiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

i Ao TaSath Falodhdil $
ZNTRCOUCTICN

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming <compiler.
Therefore, if a Class D test fails to compile because the capacity of tne
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PAS3ED or
FAILED message during execution.

Zach Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when 1t is compiled and executed. However, tne Ada
Standard permits an implementation to reject programs contalining some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the pacxage REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by wnich executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
L0 defeat some compiler optimizations allowed by the Ada Standard that
would ecircumvent a test objective. The procedure CHECK_FILE is used to
cneck the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Stanuard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
t0 veriiy that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
exazple, the tests make use of only the basic set of 55 characters, contain
lines with a maximum lengtn of 72 characters, use small numeric values, and
Place features that may not be supported by all implementations in separate
tests, However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that 1is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: IBM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler,

Version 2.2
ACVC Version: 1.8
Certificate Number: 870427W1.G8045
Host Computer:_
Machine:
Operating System:

Memory Size:

Target Computer:
Machine:
Operating System:

Memory Size:

Communications Network:

2=1

IBM 3081
VM/SP (using CMS), Version 3.1

64 megabytes

IBM RT PC
VRM, Version 1.1

4 megabytes

IBM RT PC 3278 Emulation
(Coaxial cable)

"

CONFIGURATI SN INFORMATTON

7.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the venhavior of
a campller in those areas of the Ada 3tandard that permit izplerent=tions
to differ., {Class D and E tests specificaliy check for such Impiemertatior
differences. However, tests in other classes also characterize an
implementation. This compliler s characterized by the following
interpretations of the Ada Standz~d:

. Capacities,

The compiler correctly processes tests containing loop statemernts
nested to 65 1levels, block statements nested to 65 levels, arnd
recursive procedures separately compiled as subunits nested to 17
levels. Tt correctly processes a campilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64OOSE..G (3 tests), and D2900X.)

. Universzl integer calculations.

An iIimplementation i1is allowed to reject ur.ive msal integer
calculations having values that exceed SYSTEM.MAX InT. This
implemertation does not reject such calculations and processes
themn correctly. {See tests D4AOD2A, D4AQO2B, D4AOC-4, and
D4 A004B.)

. Predefined types.

This implementation supports the additional predefirned type
LONG SNTEGER in the package STANDARD. (See tests B36001C and
B26001D.)

. DBased literals.

An impiementation i3 alliowed to reject a based literal with a
vali.e exceeding SYSTEM.MAX INT during campilation, or it zay raise
NUMERIC_ERROR or CONSTRAINT FRROR during execution. This
implementation raises NUMERIC_ERROR during executior. (See test
E24101A.)

. Array types.
An implementation is allowed to raise NUMERIC FRRCR or

CONSTRAINT ERROR for an array having a ‘'LENGTH that exceeds
STANDARD. INTEGER' LAST and/or SYSTEM.MAX INT.

2.2

alna A

CONFIGURATION INFORMATION

No exception s raised by this Implementation for a packed BOOLEAN
array naving a ‘'LENGTH exceeding INTEGER'LAST. (See test
52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
canporients raises CONSTRAINT ERROR when the length of a dimension
i1s calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC FRROR or CONSTRAINT FRROR elther
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. No exception is raised by this implementation.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR 1s raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in 1ts entirety
before CONSTRAINT ERROR 1s raised when checking whether the
expression's subtype is compatible with the target's subt ype.
(See test C520134.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incamplete type with discriminants that is used in arn
access type definition with a compatible discriminant constraint.
This izmplementation accepts such subtype indications. (See test
E381044.)

in assigning record tyvpes with discririrants, the e:xpression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression’s subt ype is
canpatiple with the target's subtype. (See test C52013A.)

Aggregates,

In the evaluation of a multi-dimensional aggregate, the order in
which choices are evaluated and index subtype checks are made
appears to depend upon the aggregate itself. (See tests CU432074
and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
cholices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All cnoices are evaluated before CONSTRAINT ERROR 18 raised if a

bound in a rnonnull range of a nonnull aggrezate does not belong to
an index subtype. (See test E43211B.)

2-3

-~y

— ~

CONFTGURATION INFORMATION

. Functions.

An implementation may ailow the declaration of a paradeteriess
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the functlon declaration,
If it accepts the function declaration, the use of the enumeration
literal's identifler denotes the <function, This implementation
rejects the declu~ation., (See test E66001D.)

. Representation clauses,

The Ada Standard does not require an Implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject 1it. while the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This Implementation accepts 'SIZFE and 'STORAGE_SIZE for tasks, and
'SMALL clauses; it rejects 'STORAGE_SIZE for collections.
Enumeration representation clauses, including those that specify
noncontiguous values, appear not to be supported. (See tests
C55B164, C87B62A, C87B62B, C87B62XC, and BC1002A.)

. Pragmas.
The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

. Input/output.

This implementation supports only the package TEXT_IO for file
operations on STANDARD INPUT and STANDARD OUTPUT.

The package SEQUENTIAL_IO0 cannot be instantiated with
unconstrained array types ani record types with discriminants.
The package DIRECT_IO cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

. Generics.

Generic subprogram declarations and bodies cannot be compilied in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies cannot be complled in
separate campilations. (See tests CA2009C and BC3205D.)

2-4

-y

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the IBM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler was performed, 19
tests had been withdrawn. The remaining 2380 tests were potentially
applicable to this valldation. The AVF determined that 480 tests were
inapplicable to this implementation, and that the 1900 applicable tests
were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L
Fassed 66 862 914 17 10 31 1900
Falled 0 0 0 0 0 0 0
Inapplicable 3 5 45y 0 3 15 480
Withdrawn 0 7 12 0 0 0 19
TOTAL 69 874 1380 17 13 46/ 2399
31

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

~2_3_ K _5_6_7_8_9 10 11 12 1 __
Passed 93 205 280 243 161 97 136 262 107 32 217 67 1900
Failed o 0 0 0 0 0 O 0 0 0 0 0 0

Inapplicable 23 120 140 y 0 0 3 0 23 © 1 166 480
Withdrawn 0 5 5 0 0 1 1 2] 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
tnis validation:

C32114A C41404a B74101B BC3204C
B33203C B451164A C87B50A

C340184A Cc48008a 920054

C35904A B49006A C940ACA

B374014A B4AO10C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 480 tests were inapplicable for the
reasons indicated: ‘

. C34001D, B52004E, BS55BO9D, and C55BO7B use SHORT_INTEGER which is
not supported by this compiler.

» C3U4001F and C35702A use SHORT_FLOAT which is not supported by this
compiler.

—

x

TEST INFORMATION

C34001G and C35702B use LONG_FLOAT which is not supported by this
compiler.

C55316A makes use of an enureration representation clause
containing noncontiguous values which 1is not supported by this
compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT I0.

C87B62B uses the length clause 'STORAGE SIZE for access types
which is not supported by this compiler. The length clause is
rejected during compilation.

BA1011C, CA10124, CA2009C, CA2009F, LAS008A..H (8 tests), LA5008J,
LAS5008M, LAS008N, and BC3205D compile generic specifications and
bodies in separate compilations which is not supported by this
compiler.

CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

LA5008I and LAS008K are inapplicable because, in this
implementation, a generic unit is made obsolete by the
recompilation of a unit on which the generiz tody (but not the
specification) depernds. Since this implemertation does not
support separate compilation of generic unit specifications and
bodies, a generic specification must be considered obsolete
whenever the body is found to be obsolete. These tests should
report at 1link time that the body of a generic unit is obsolete.
However, a compile-time error message reports that the generic
unit is obsolete.

AE2101C wuses an instantiation of package SEQUENTIAL IO with
unconstrained array types which is not supported by this compiler.

AE2101H uses an instantiation of package DIRECT IO with
unconstrained array types which is not supported by this compiler.

The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

TEST INFORMATION

C24113C..Y (23 tests) C35708C..Y (23 tzsts) CHS5421C..Y (23 testis)
£35705C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests)
C357CiC..Y (23 tests) CU5241C..Y (23 tests) CH45521C..Z (24 tests)
C35707C..Y (23 tests) Cu5321C..Y (23 tests) C45621C..2 (24 tests)

. The following 164 tests require the use of external files. This
implementation supports only the files STANDARD_INPUT and
STANDARD_OUTPUT:

CE2102C CE3104A CE3411a
CE2102G CE3107A CE3412A
CE2104A..D (4 tests) CE3108A..B (2 tests) CE3413A
CE21054A CE31094A CE3413C
CE21064A CE31104 CE3602A..D (U4
CE2107A..F (6 tests) CE3111A..E (5 tests) CE3603A
CE2108A..D (4 tests) CE3112A..B (2 tests) CE3604Aa
CE21094 CE3114A..B (2 tests) CE3605A..E (5
CE2110A..C (3 tests) CE3115A CE3606A..B (2
CE2111A..E (5 tests) CE3203A CE37044..B (2
CE2111G..H (2 tests) CE32084A CE3704D..F (3
CE2201A..F (6 tests) CE33014..C (3 tests) CE3704M..0 (3
CE2204A..B (2 tests) CE3302A CE3706D
CE2210A CE33054 CE3706F
CE2401A..F (6 tests) CE34028..D (4 tests) CE3804A..E (5
CE24044 CE3403A..C (3 tests) CE3804G
CE2405B CE3403E..F (2 tests) CE38041
CE2406A CE3UOBA..C (3 tests) CE3804K
CE2407A CE3405A..D (4 tests) CE3804M
CE2408A CE3406A..D (4 tests) CE38054..B (2
CE2409A CE340TA..C (3 tests) CE38064a
CE2410A CE3408A..C (3 tests) CE3806D..E (2
AE3101A CE34094 CE3905A..C (3
CE3102B8 CE3408C..F (4 tests) CE3%05L
EE3102C CE3410A CE39064..C (3
CE3103A CE2410C..F (4 tests) CE3Q90€EE..F (2

3.6 SPLIT TESTS

If one or more errors dc rot appear to have been detected in a Ciass B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
pecause of its size is split into a set of smaller subtests that can be
processed.

tests)

tests)
tests)
tests)
tests)
tests)

tests)

tests)

tests)
tests)

tests)
tests)

oo YD U
TEST INFORMATION

Splits were required for six Class B tests:

BA3006A BA3007B BA3008B
BA3006B BA30084 BA3013A

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the IBM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler was submitted to
the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests,
and that the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the IBM VRM Ada Cross Compiler using ACVC Version 1.8 was
conducted on-site Dby a valicdation team from the AVF. The configuration
consisted of an IBM 3081 nost operating under VM/SP (using CMS), Version
3.1, and an IBM RT PC target operating under VRM, Version 1.1. The host
and target computers were linked via an I3M RT PC 3278 emulation.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
izmplementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The conients of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the IBM 3081, and all executable tests were run on the IBM
RT PC. Object files were linked on the host computer, and executable
images were transferred to the target computer over a coaxial cable via a
3278 emulation capability provided on the RT PC. Each test was executed in
VRM in response to the IPL SVC issued from an AIX shell. (AIX is a
UNIX-like operating system that runs on the RT PC. Tnre reascon AIX was used
in the process of running tests on VRM is that VRM has no up/download
capability with CMS, no file structure, and no exec type control language
for automating the process.) Since VRM offers no mechanism for redirecting
I/0 to a file (there is no file system in VRM), the package body for the
REPORT package was modified to write output data not only to the console,
but also to a VRM minidisk from which AIX could read it. After the tests
were executed, the results were read from the VRM minidisk and appended to
an AIX results file.

3-5

TEST INFORMATION

The results of execution and the results of linking the Class L tests were
uploaded to +the host using a 3278 emulation capability on the RT PC.
Compiler listings, console spools, and execution results were transferred
to anotner 3081 via a Remote Spooling Communication System (RSCS) for
printing cn an IBM 3800 printer.

The compiler was tested using command scripts provided by IBM Corporation
and reviewed by the validation team. The compiler was invoked through the
use of a CMS execute statement named ART. ART supports the following
options:

BCF Causes the code generator to generate output filenames
according to the working library tag number range. If
either MAIN or BIND are specified in addition to BCF,

a file called MAIN BCF A is created. MAIN BCF A contains
the filenames of all files that must be bound together to
create the executable image. If BCF is not specified,
the compiler uses the input filename for the output
filenamre.

BIND This option binds a main program which has been previously
compiled as a library unit. When using this option, the

parameter to ART must be the compilation unit name.
This option can be used when a main program has subunits.

INIT Initializes the working sublibrary for the compiler.

LIB Informs the RT compiler generator that this compilation
unit is a library unit, rather than a main unit; in other
words, the program will not be executed directly, but
instead is "withed" by another unit.

LIST Invokes the Ada listing tool to produce a source listing
after the coopilation. If errors occur during coampilation,
appropriate error messages are interspersed in the listing.

MAIN Directs the Ada RT Compiler to produce code for this unit
as a main program. This program can "with" other programs
and expect to have the "withed" units included and elaborated
at run time.

The following options were in effect for testing:

Single File Tests:

ART acve_file name (MAIN/main_compilation_unit_name BCF INIT/TSTLIB LIST

Multiple File Tests - the first file is compiled as follows:

ART acve_file name (LIB BCF LIST INIT/TSTLIB

Each subsequent file is compiled as follows (same as first file except
without initializing the compilation library):

3-6

TEST INFORMATION

ART acvc_file_name (LIB BCF LIST
After all files are compiled, the main is binded as follows:
ART main_compilation_unit_name (BIND BCF
Test output, compilation listings, and job logs were captured on magnetic

tape and archived at the AVF. The 1listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Tne validation team arrived at IBM Corporation in Gaithersburg MD on 24
April 1987, and departed after testing was completed on 28 April 1987.

APPENDIX A

DECLARATION OF CONFORMANCE

IBM Corporation has submitted the following declaration
of conformance concerning the IBM S/370 - VM/SP to RT
PC - VAM Ada Cross Campiler.

A=1

-

Co_ .

DECLARATION OF CONFORMANCE

Compiler Implementor: I3M Corporation
Ada“Validation Facility: ASD/SCOL, Wright-Patterson AFB, Od
Ada Compiler Validat:ion lapability (ACVC) Verz.on: 1.8

Base Configuration

Base Compiler Name: IBM S/370 VM/SP to RT PC - VRM Version: 2.2
Ada Cross Compiler
Host Architecture ISA: IBM 3081 OS&VER #: VM/SP (using CMS)
Version 3.1
Target Architecture ISA: IBM RT PC OS&VER #: VRM, Version 1.1

Implementor's Declaration

I, the undersigned, representing IBM Corporation, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-i:154& in
the compiler listed in this declaration. I declare that IBM Corporation is
the owner of record of the Ada language compiler listed above and, as such,
is responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-18154. All certificates and registrations for Ada language
compiler listed in this declaration shall be made only in the owner's
corporate name.

‘Q\)\\/\Sa‘&u\. Date: q 19 lé"]

IBM Corporation
Paul W. Weiler, Manager, Ada Products Center

Owner's Declaration

I, tne undersigned, representing IBM Corporation, take full responsibility
for implementation and maintenance of the Ada compiler listed above, and
agree to the public disclosure of the final Validaticn Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers 1listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

m Date: 5J 'ih"l

I Corporation
Paul W. Weiler, Manager, Ada Products Center

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependenclies correspond to implementatior-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-18154, and to certain allowed restrictions on
representation clauses. The <implementation-dependent characteristics of
the I8M S/370 - VM/SP to RT PC - VAM Ada Cross Compiier, Version 2.2, are
described in the following sections which discuss toples in Appendix © of
the Ada Language Reference Manual (ANSI/MIL-STD-16754). Impiementatior.-
portions of the package STANDARD are 2iso included in this

package STANDARD is
type INTEGER 13 range -32763 .. 32767;
type LONG_INTEGER is range -2 147 U83_648 .. 2 147 483 647;

type FLOAT is digits 6 range -1.7C41E28 .. 1.70741E38;

type DURATION is delta 2.0%%*(-14) range 86 400.0 .. B86_L400.0;

ernd STANDARD;

P

it sndiiing -

VRM Compiler Appendix F

Pragras

Unrecognized and unsupported pragmas are ignored with an appropriate error message.

The pragmas Controlled, Inline, List, Memory_Size, Optimize, Pack, Page, Shared.
Storage_Unit., and System_Name are not supported.

The pragmas Elaborate. Priority, and Suppress are supported.
The Interface pragma is supported for three languages: C. PL8, and assembly. The
assembly and C interface pragmas are part of the Ada implementation. and should not

be used. The PL8 interface pragma provides calling convention compatible with the
PL8 language.

Imolenentztion Defined Attributes

There are no implementatiocn defined attributes.

Representation Clauses

Length Clauses (LRM 13.2) are supported in the following instances:

a. 'Storage_Size for task types (not access types)
b. 'Size
c. 'Small

No other representation ~lauses are supported.

Restrictions On Unchecked Conversion

Unchecked_Conversion between two types (or subtypes) A and B is permitted provided
that A and B are the same static size, and neither A nor B are private.

Interpretation Of Tupe Address

The type address is implemented as the 32-bit virtual address of the corresponding
object.

B-2

-

Package Svsten

PACKAGE System IS
TYPE Address is access integer;
TYPE Nane IS (TeleSoft_Ada)l:
System_Name : CONSTANT name := TeleSoft_Ada:;
Storage_Unit : CONSTANT := 8;
Memory_Size : CONSTANT := 1024%1024;

-- System-Dependent Named Nurkers:

Min_Int : CONSTANT := -(2 ¥% 31);

Max_Int : CONSTANT := (2 %% 31) - 1;

Max_Digits : CONSTANT := 6:

Max_Mantissa : CONSTANT := 31;

Fine_Delta : CONSTANT := 1.0 /7 (2 %% (Max_Mantissa - 1));
Tick : CONSTANT := 1.0:

-~ Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0 .. 255;
Max_Object_Size : CONSTANT (32%1024)-~1;
Max_Record_Count : CONSTANT (32%1024)-1;

Max_Text_lo_Count : CONSTANT 16%1024;
Max_Text_Jo_Field : CONSTANT 1000;
-~ Other Types
TYPE Subprogram_Value is
Recozrd
Entry_Point : Address;
Static_Base : Address;
End Record:
END Systenm;
B-3

e . a

-

Conventicon Used For Gererating Names

Ada names are hashed to 8 character identifiers in the output object code. The
first letter of each 8 character identifier defines the object designated by the
identifier as follows:

- label used to delimit blocks of code for optimization
- Static Data (i.e., library package data)

- Stack frame size for a given subprogram

- End of subprogram code

Literal pool for package

= Subpreogram entry point

- Label Defining the return code for a subprogranm

- miscellaneous label

- Exception label

X0 eI ToOow
t

The last seven characters of the identifiers implement the hashing function and have
no particular meaning to the user.

Imple~entation Defined Characteristics For Input-Output Packages.

Text_I0 is supported for standard input and output only. Text_I0 is record ori-
ented, so bytes will not appear until a full record is output (or input) (e.g..,
new_line, or put_line).

B-4

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values 1s identified by the extension .TST in 1its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test Iis run. The values used for this validation are given
below,

Name and Meaning Value

$BIG_ID1 (1..199 => 'A', 200 => "1")
Identifier the size of the
maximum Input line length with
varying last character.

$BIG_ID2 (1..7199 => 'A', 200 => '2")
Identitier tne size of the
maximum dinput line 1length with
varying last character.

$BIG_ID3 (1..100 | 102..200 => 'A",
identifier the size of the 101 => '3Y)
maximum input line length with
varying middle character.

$BIG_ID4 (1..100 | 102..200 => 'A"',
Identifier the size of the 101 => '4")
maximum ZInput line 1length with
varying middle character.

’

$BIG_INT LIT (1..197 => '0', 198..200 => "298")
An integer 1literal of value 298
with enough 1leading zeroes so
that 1t 1s the size of the
maximum line length.

g

TEST PARAMETERS

Name and Meaning

Value

$BIG_RFAL LT
A real literal that can be
either of floating- or fixed-
point type, has vaiue 690.0, and
has enough 1lezding zeroes to be
the size of the maximum line
length.

$BLANKS
A sequence of bplanks twenty
characters fewer than the size
of the maximum line length.

$COUNT_LAST
A universal integer 1literal

whose value is TEXT‘IO.COUNT'LAST.

$EXTENDED_ASCII CHARS
A string 1literal contalning all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
A universal integer literal

whose value is TEXI_IO.FIELD'LAST.

$FILE _NAME WITH BAD CHARS
An 1iliegal extermal file name
tuat either contains invalid
characters, or is too long if no
invalid characters exist.

$ F’ILE_NAME_WITH__WILD CARD_CHAR
An external file name that
either contains a wiid card
character, or 13 too long if no
wild card character exists,

$GREATER_THAN DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_IHAN_DURATION_?ASE_}AST
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

(1..194 => '0', 195..200 =>
"69.0E1")

(1..180 => * ")

16383

"abedefghijklmnopqrstuvwxyz" &
niggr@N{}~"

1000

"XX XX"

NXYZ*"

100_000.0

131.072.0

—

Name and Meaning

Value

e Javs &

$ILLEGAL EXTEARNAL FILE NAMED

An illegal extema 1 file rame.

$ILLEGAL _EXTERNAL FILE NAME2
An iTiegal extemal file rame
that is different fram
$TLLEGAL EXTERNAL FILE NAMF1,

$INTEGER _FIRST
The universal iInteger liiteral
expression whose value is
INTEGER'FIRST,

$INTEGER LAST
The universal Integer literal
expression whose value is
INTEGER'LAST.

$LESS THAN DURATION
A unlversal real value that lies
between DURATION'BASE'FTIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASE FIRST
The uriversal real vaiue that is
less than DURATION'BASE'FIRET,
if such a value exists.

$MAX DIGITS
The universal integer 1literal
whose value Iis the maximum
digits supported for floating-
point types.

$MAX iN_LEN
The universal integer 1l1iteral
whose value Is the maximum
input 1line length permitted by
the implementation.

$MAX INT
The universal integer 1literal
whose value iIs SYSTEM.MAX INT,

c-3

"BAD/CHARACTE R*Z€"

(1..50 => 'A")

-32768

32767

-100_000.0

-131_072.0

200

2_147_483 647

B and

-7ﬁ —— ——

TEST PARAMETERS

Name and Meaning

Value

$HAME
A nane of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER
if one exists, otherwise any
undefined rame.

$NEG _BASED INT
A based Integer literal whose
hi ghest order nonzero bit
falls in the sign bit
position of the representztion
for SYSTEM.MAX INT.

$NON_ASCII_CHAR TYPE
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphics.

alha

LONG_LONG_INTEGER

10#FFFFFFFE#

(NON_NULL)

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"ATl-ddddd" is to an Ada Commentary.

. C32174A: An unterminated string literal occurs at line 62.
. B33203C: The reserved word "IS" 13 misspelled at line 45.

. C340'84A: The call of furction G at line 174 is ambiguous in the
presence of impllicit conversions.

» C35904A: The elaboration of subtype declarations OSFX3 and SFX4
may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in
the test.

. B37401A: The object deciaratiors at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

o

. CHO4A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test,

. BU45116A: ARRPRIBL! and ARRPRIBLZ? are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOL TYPE--at line
41,

. CUBOORA: The assumption that evaluation of default iritial values
occuwrs when an exception is raised by an allocator is incorrect
accoriing to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42,

. BUAOIOC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

1> e
Wali

HDRAWN TESTS

B74101B: The begin at 1ine 9 causes a declarative art to be
bep:l P
treated as a seguence of statements,

C87B50A: Thne cail of "/=" at line 31 requires a use clause for
package A.

C92005A: The "/=" for type PACK.BIG_INT at iine 40 I1s not visible
without a use clause for the package PACK.

COU0ACA: The assumption that allocated task TT1 will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

BC3204C: The body of BC3204C0 is missing.

